Course duration

• 3 days

Course Benefits

- Python essentials
- Capabilities of the Apache Spark platform and its machine learning module
- Terminology, concepts, and algorithms used in machine learning

Course Outline

- 1. Defining Data Science
 - 1. Data Science, Machine Learning, AI?
 - 2. The Data-Related Roles
 - 3. Data Science Ecosystem
 - 4. Business Analytics vs. Data Science
 - 5. Who is a Data Scientist?
 - 6. The Break-Down of Data Science Project Activities
 - 7. Data Scientists at Work
 - 8. The Data Engineer Role
 - 9. What is Data Wrangling (Munging)?
 - 10. Examples of Data Science Projects
 - 11. Data Science Gotchas
 - 12. Summary
- 2. Machine Learning Life-cycle Phases
 - 1. Data Analytics Pipeline
 - 2. Data Discovery Phase
 - 3. Data Harvesting Phase
 - 4. Data Priming Phase
 - 5. Data Cleansing
 - 6. Feature Engineering
 - 7. Data Logistics and Data Governance
 - 8. Exploratory Data Analysis
 - 9. Model Planning Phase
 - 10. Model Building Phase
 - 11. Communicating the Results
 - 12. Production Roll-out
 - 13. Summary
- 3. Quick Introduction to Python Programming
 - 1. Module Overview
 - 2. Some Basic Facts about Python

- 3. Dynamic Typing Examples
- 4. Code Blocks and Indentation
- 5. Importing Modules
- 6. Lists and Tuples
- 7. Dictionaries
- 8. List Comprehension
- 9. What is Functional Programming (FP)?
- 10. Terminology: Higher-Order Functions
- 11. A Short List of Languages that Support FP
- 12. Lambda
- 13. Common High-Order Functions in Python 3
- 14. Summary
- 4. Introduction to Apache Spark
 - 1. What is Apache Spark
 - 2. Where to Get Spark?
 - 3. The Spark Platform
 - 4. Spark Logo
 - 5. Common Spark Use Cases
 - 6. Languages Supported by Spark
 - 7. Running Spark on a Cluster
 - 8. The Driver Process
 - 9. Spark Applications
 - 10. Spark Shell
 - 11. The spark-submit Tool
 - 12. The spark-submit Tool Configuration
 - 13. The Executor and Worker Processes
 - 14. The Spark Application Architecture
 - 15. Interfaces with Data Storage Systems
 - 16. Limitations of Hadoop's MapReduce
 - 17. Spark vs MapReduce
 - 18. Spark as an Alternative to Apache Tez
 - 19. The Resilient Distributed Dataset (RDD)
 - 20. Datasets and DataFrames
 - 21. Spark SQL
 - 22. Spark Machine Learning Library
 - 23. GraphX
 - 24. Summary
- 5. The Spark Shell
 - 1. The Spark Shell
 - 2. The Spark v.2 + Shells
 - 3. The Spark Shell UI
 - 4. Spark Shell Options
 - 5. Getting Help
 - 6. The Spark Context (sc) and Spark Session (spark)
 - 7. The Shell Spark Context Object (sc)
 - 8. The Shell Spark Session Object (spark)
 - 9. Loading Files

- 10. Saving Files
- 11. Summary
- 6. Quick Intro to Jupyter Notebooks
 - 1. Python Dev Tools and REPLs
 - 2. IPython
 - 3. Jupyter
 - 4. Jupyter Operation Modes
 - 5. Basic Edit Mode Shortcuts
 - 6. Basic Command Mode Shortcuts
 - 7. Summary
- 7. Data Visualization in Python using matplotlib
 - 1. Data Visualization
 - 2. What is matplotlib?
 - 3. Getting Started with matplotlib
 - 4. The matplotlib.pyplot.plot() Function
 - 5. The matplotlib.pyplot.scatter() Function
 - 6. Labels and Titles
 - 7. Styles
 - 8. The matplotlib.pyplot.bar() Function
 - 9. The matplotlib.pyplot.hist () Function
 - 10. The matplotlib.pyplot.pie () Function
 - 11. The Figure Object
 - 12. The matplotlib.pyplot.subplot() Function
 - 13. Selecting a Grid Cell
 - 14. Saving Figures to a File
 - 15. Summary
- 8. Data Science and ML Algorithms with PySpark
 - 1. In-Class Discussion
 - 2. Types of Machine Learning
 - 3. Supervised vs Unsupervised Machine Learning
 - 4. Supervised Machine Learning Algorithms
 - 5. Classification (Supervised ML) Examples
 - 6. Unsupervised Machine Learning Algorithms
 - 7. Clustering (Unsupervised ML) Examples
 - 8. Choosing the Right Algorithm
 - 9. Terminology: Observations, Features, and Targets
 - 10. Representing Observations
 - 11. Terminology: Labels
 - 12. Terminology: Continuous and Categorical Features
 - 13. Continuous Features
 - 14. Categorical Features
 - 15. Common Distance Metrics
 - 16. The Euclidean Distance
 - 17. What is a Model
 - 18. Model Evaluation
 - 19. The Classification Error Rate
 - 20. Data Split for Training and Test Data Sets

- 21. Data Splitting in PySpark
- 22. Hold-Out Data
- 23. Cross-Validation Technique
- 24. Spark ML Overview
- 25. DataFrame-based API is the Primary Spark ML API
- 26. Estimators, Models, and Predictors
- 27. Descriptive Statistics
- 28. Data Visualization and EDA
- 29. Correlations
- 30. Hands-on Exercise
- 31. Feature Engineering
- 32. Scaling of the Features
- 33. Feature Blending (Creating Synthetic Features)
- 34. Hands-on Exercise
- 35. The 'One-Hot' Encoding Scheme
- 36. Example of 'One-Hot' Encoding Scheme
- 37. Bias-Variance (Underfitting vs Overfitting) Trade-off
- 38. The Modeling Error Factors
- 39. One Way to Visualize Bias and Variance
- 40. Underfitting vs Overfitting Visualization
- 41. Balancing Off the Bias-Variance Ratio
- 42. Linear Model Regularization
- 43. ML Model Tuning Visually
- 44. Linear Model Regularization in Spark
- 45. Regularization, Take Two
- 46. Dimensionality Reduction
- 47. PCA and isomap
- 48. The Advantages of Dimensionality Reduction
- 49. Spark Dense and Sparse Vectors
- 50. Labeled Point
- 51. Python Example of Using the LabeledPoint Class
- 52. The LIBSVM format
- 53. LIBSVM in PySpark
- 54. Example of Reading a File In LIBSVM Format
- 55. Life-cycles of Machine Learning Development
- 56. Regression Analysis
- 57. Regression vs Correlation
- 58. Regression vs Classification
- 59. Simple Linear Regression Model
- 60. Linear Regression Illustration
- 61. Least-Squares Method (LSM)
- 62. Gradient Descent Optimization
- 63. Locally Weighted Linear Regression
- 64. Regression Models in Excel
- 65. Multiple Regression Analysis
- 66. Evaluating Regression Model Accuracy
- 67. The R>2

- 68. Model Score
- 69. The MSE Model Score
- 70. Hands-on Exercise
- 71. Linear Logistic (Logit) Regression
- 72. Interpreting Logistic Regression Results
- 73. Hands-on Exercise
- 74. Naive Bayes Classifier (SL)
- 75. Naive Bayesian Probabilistic Model in a Nutshell
- 76. Bayes Formula
- 77. Classification of Documents with Naive Bayes
- 78. Hands-on Exercise
- 79. Decision Trees
- 80. Decision Tree Terminology
- 81. Properties of Decision Trees
- 82. Decision Tree Classification in the Context of Information Theory
- 83. The Simplified Decision Tree Algorithm
- 84. Using Decision Trees
- 85. Random Forests
- 86. Hands-On Exercise
- 87. Support Vector Machines (SVMs)
- 88. Hands-On Exercise
- 89. Unsupervised Learning Type: Clustering
- 90. k-Means Clustering (UL)
- 91. k-Means Clustering in a Nutshell
- 92. k-Means Characteristics
- 93. Global vs Local Minimum Explained
- 94. Hands-On Exercise
- 95. Time-Series Analysis
- 96. Decomposing Time-Series
- 97. A Better Algorithm or More Data?
- 98. Summary

Class Materials

Each student will receive a comprehensive set of materials, including course notes and all the class examples.

Class Prerequisites

Experience in the following is required for this Spark class:

• General knowledge of statistics and programming.