
Unit Testing in Visual Studio 2019

 

Course duration

 2 days

Course Benefits

Why unit tests are critical to software quality
How unit tests and integration tests differ
Popular .NET unit testing frameworks
Popular JavaScript unit testing frameworks
MSTest V2 improvements and capabilities
The anatomy of a unit test
The 3A pattern (Arrange, Act, Assert)
Using Assert, StringAssert, and CollectionAssert
Testing for expected exceptions
Test class inheritance
Why and how to test internal APIs
MSTest, NUnit, and xUnit test projects
Unit testing .NET Core projects
Using Test Explorer to manage your tests
Organizing tests using traits and playlists
Running unit tests in parallel
In-Assembly Parallel (IAP) execution
Parallelism by assembly, class, and method
Running tests and managing test results
Viewing, grouping, and filter tests and results
Creating and using a .runsettings file
Continuous testing in Visual Studio
Test-Driven Development (TDD) as a design practice
Why write your tests first
Practicing TDD within Visual Studio
How to effectively refactor within TDD
How to effectively refactor legacy code
Practices for writing good unit tests
Happy path vs. sad path testing
Testing boundary conditions (Right-BICEP)
Organizing tests and test assemblies
Test naming conventions (e.g. BDD)
Why and how to analyze code coverage
Using code coverage as a metric
Parameterized (data-driven) unit tests
Concurrent testing using Live Unit Tests
Concurrent testing using NCrunch (3rd party)
Testing difficult code with the use of doubles
Using dummies, fakes, stubs, and mocks

 1 / 3

Phoca PDF

http://www.phoca.cz/phocapdf


Unit Testing in Visual Studio 2019

 

Using Microsoft Fakes to test difficult code
Using Rhino Mocks to test difficult code
Using NSubstitute to test difficult code
Generating MSTest unit tests with IntelliTest
Generating NUnit unit tests with IntelliTest

Course Outline

1. Unit Testing in .NET
1. What is (and isn’t) a unit test
2. Why write unit tests
3. .NET unit testing frameworks
4. MSTest V2, NUnit, xUnit
5. The anatomy of a unit test
6. Writing and running your first unit test

2. Unit Testing in Visual Studio
1. Testing support in Visual Studio
2. MSTest, NUnit, and xUnit test projects
3. Test Explorer and other windows
4. Writing and running unit tests in Visual Studio
5. Managing a large number of tests and test results
6. Organizing tests by grouping, filtering, and playlists
7. Continuous testing in Visual Studio

3. Test-Driven Development (TDD)
1. TDD overview and benefits
2. Practicing TDD within Visual Studio
3. Effectively refactoring code
4. Working with legacy code
5. Using CodeLens to support TDD and refactoring

4. Writing Good Unit Tests
1. Analyzing code coverage
2. Using code coverage as a metric
3. Parameterized (data-driven) unit tests
4. DataRow, DynamicData, and DataSource attributes
5. Concurrent testing using Live Unit Testing
6. Concurrent testing using NCrunch

5. Testing Difficult Code
1. The need to isolate code under test
2. Doubles (dummies, stubs, fakes, and mocks)
3. Microsoft Fakes framework (stubs and shims)
4. Comparing mocking frameworks
5. Using Rhino Mocks and NSubstitute frameworks
6. Profiling slow running unit tests

 2 / 3

Phoca PDF

http://www.phoca.cz/phocapdf


Unit Testing in Visual Studio 2019

 

7. Using IntelliTest with legacy code

Class Materials

Each student will receive a comprehensive set of materials, including course notes and all the
class examples.

Class Prerequisites

Experience in the following is required for this ASP.NET class:

Experience or familiarity with the C# language.
Experience or familiarity with Visual Studio 2015, 2017, or 2019.
Experience or familiarity with writing, debugging, and maintaining code.
Experience or familiarity with Application Lifecycle Management basics.
Experience or familiarity with your organization’s development lifecycle.
Experience or familiarity with building a high-quality software product.

Powered by TCPDF (www.tcpdf.org)

 3 / 3

Phoca PDF

http://www.tcpdf.org
http://www.phoca.cz/phocapdf

