
Intermediate/Advanced Java (Java 11+) Training

 

Course duration

 5 days

Course Benefits

Chiefly, learn to program effectively in the Java language.
Understand Java as a purely object-oriented language, and implement software as
systems of classes.
Implement and use inheritance and polymorphism, including interfaces and abstract
classes.
Design appropriate exception handling into Java methods, and use the logging API
appropriately.
Use Java as a functional language, making appropriate choices of tools including inner
classes, functional interfaces, method references, and lambda expressions.
Use the Stream API for efficient processing of data sets.

Available Delivery Methods

Public Class
Public expert-led online training from the convenience of your home, office or anywhere with an
internet connection. Guaranteed to run .  

Private Class
Private classes are delivered for groups at your offices or a location of your choice.  

Course Outline

1. Review of Java Fundamentals
1. The Java Architecture
2. Forms for Java Software
3. Three Platforms
4. The Java Language
5. Numeric Types
6. Characters and Booleans
7. Enumerations
8. Object References
9. Strings and Arrays

10. Conditional Constructs

 1 / 5

Phoca PDF

http://www.phoca.cz/phocapdf


Intermediate/Advanced Java (Java 11+) Training

 

11. Looping Constructs
12. Varargs

2. Object-Oriented Software
1. Complex Systems
2. Abstraction
3. Classes and Objects
4. Responsibilities and Collaborators
5. UML
6. Relationships
7. Visibility

3. Classes and Objects
1. Java Classes
2. Constructors and Garbage Collection
3. Naming Conventions and JavaBeans
4. Relationships Between Classes
5. Using this
6. Visibility
7. Packages and Imports
8. Overloading Methods and Constructors
9. JARs

4. Inheritance and Polymorphism in Java
1. UML Specialization
2. Extending Classes
3. Using Derived Classes
4. Type Identification
5. Compile-Time and Run-Time Type
6. Polymorphism
7. Overriding Methods
8. The @Override Annotation
9. Superclass Reference

5. Using Classes Effectively
1. Class Loading
2. Static Members
3. Statics and Non-Statics
4. Static Initializers
5. Static Imports
6. Prohibiting Inheritance
7. Costs of Object Creation
8. Strings and StringBuffers
9. Controlling Object Creation

10. Understanding Enumerated Types
11. Stateful and Behavioral Enumerations

6. Interfaces and Abstract Classes
1. Separating Interface and Implementation
2. UML Interfaces and Realization
3. Defining Interfaces
4. Implementing and Extending Interfaces

 2 / 5

Phoca PDF

http://www.phoca.cz/phocapdf


Intermediate/Advanced Java (Java 11+) Training

 

5. Abstract Classes
7. Collections

1. Dynamic Collections vs. Arrays
2. UML Parameterized Type
3. Generics
4. Using Generics
5. The Collections API
6. The Collection<E> and List<E> Interfaces
7. The ArrayList<E> and LinkedList<E> Classes
8. Looping Over Collections: Iterable<E>
9. Collecting Primitive Values: Auto-Boxing

10. Using Wildcards with Generic Types
11. Iterators and the Iterator<E> Interface
12. Maps and the Map<K,V> Interface
13. Sorted Collections
14. The SortedSet<E> and SortedMap<K,V> Interfaces
15. The Collections Class Utility
16. Algorithms
17. Conversion Utilities

8. Exception Handling and Logging
1. Reporting and Trapping Errors
2. Exception Handling
3. Throwing Exceptions
4. Declaring Exceptions per Method
5. Catching Exceptions
6. The finally Block
7. Catch-and-Release
8. Chaining Exceptions
9. try-with-resources

10. Logging
11. The Java SE Logging API
12. Loggers
13. Logging Levels
14. Handlers
15. Configuration
16. Best Practices

9. Nested Classes
1. Nested Classes
2. Static Classes
3. Inner Classes
4. Relationship with the Outer Object
5. Local Classes
6. Enclosing Scope
7. Anonymous Classes

10. Functional Programming
1. Passing Behavior as a Parameter
2. Inner Classes

 3 / 5

Phoca PDF

http://www.phoca.cz/phocapdf


Intermediate/Advanced Java (Java 11+) Training

 

3. Functional Interfaces
4. Built-In Functional Interfaces
5. Lambda Expressions
6. Scope and Visibility
7. Deferred Execution
8. Method References
9. Creational Methods

10. Designing for Functional Programming
11. Default Methods

11. Streams
1. The Stream Processing Model
2. Streams
3. Relationship to Collections
4. Advantages and Disadvantages
5. Iterating, Filtering, and Mapping
6. Primitive-Type Streams
7. Aggregate Functions and Statistics
8. Sorting
9. Generating, Limiting, and Reducing

10. Finding and Matching
11. Grouping
12. Flattening and Traversing
13. Sequential vs. Parallel Processing

Class Materials

Each student will receive a comprehensive set of materials, including course notes and all the
class examples.

Class Prerequisites

Experience in the following is required for this Java class:

Students must be able to write, compile, test, and debug simple Java programs, using
structured programming techniques, strong data types, and flow-control constructs such
as conditionals and loops.

Prerequisite Courses

 4 / 5

Phoca PDF

http://www.phoca.cz/phocapdf


Intermediate/Advanced Java (Java 11+) Training

 

Courses that can help you meet these prerequisites:

Introduction to Java Training
Object-Oriented Analysis and Design (OOAD) Training with UML

Follow-on Courses

Advanced Java Programming
Object-Oriented Analysis and Design (OOAD) Training with UML

Powered by TCPDF (www.tcpdf.org)

 5 / 5

Phoca PDF

/java-training/course/introduction-java-training-for-new-programmers/
/java-fundamentals-training/course/object-oriented-analysis-and-design-ooad-training/
/java-fundamentals-training/course/advanced-java-programming-jva206/
/java-fundamentals-training/course/object-oriented-analysis-and-design-ooad-training/
http://www.tcpdf.org
http://www.phoca.cz/phocapdf

